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This sensing and
control system
employs a feedback
loop to bring a robot’s
internal representation
of its environment
into registration with
the real world.
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T he domain of robot sensing has
much more structure than that of
general sensing. A robot sensing
system must operate within time and
accuracy limits usually mandated by the
application. It commonly does this by
precomputing as much information as
possible about the robot’s environment
and the objects in it, and storing this infor-
mation as a model of the world. In most
cases, this knowledge corresponds to
statistical or structural methods of iden-
tifying objects in images, but is encoded in
such a way as to be useful only for recog-
nition or object location.'

As robot tasks become more compli-
cated, this approach becomes less viable.
A more general approach to modeling is
required when task and path planning
must be effected at runtime rather than
fixed beforehand. And when unknown
objects must be handled or when the envi-
ronment becomes too complicated, the
simple methods break down. As more flex-
ibility is required of the system, more
generality is required of the models. For-
tunately, in industrial robotics environ-
ments a good source of models is usually
available—the computer-aided design files
used to define the objects. A designer can
take advantage of this geometrically com-
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plete information to substantially enhance-
the capabilities of a robot sensing system.
In addition to modeling the geometry of
objects, a sensing system must us'ually
model the environment surrounding the
objects and account for the many instances
of each object that might appear in the
world and the changes that might be made
to each of them. This makes representa-
tion and modeling substantially more than
a simple description of the objects. Path
planning needs an explicit representation
of the space surrounding objects, to make
it possible to compute optimal motion
trajectories. When objects can change dur-
ing a task either by being machined or by
being joined to one another in assemblies,
it becomes necessary to treat descriptions
as functions of time as well as of space.
At the National Bureau of Standards,
we have developed and implemented a
sensing and path planning system for a
robot meant to operate in a metal machin-
ing shop (Figure 1). This system has many
of the properties deemed desirable for a
robot working in a complex environment.
The sensing part of the system consists of
a sensing module and a representation
module. The sensing module operates the
sensors, performs feature extraction and
matching, and presents information about
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Figure 1. Architecture of the robot sensing and path planning system.

object identities and positions to the rep-
resentation module. The representation
module is responsible for incorporating
the sensed data into an internal represen-
tation of the world, for maintaining con-
sistency in the internal representation, and
for making predictions about the world
that are used to guide the sensing. The path
planning part of the system plans collision-
free paths, and the control system executes
these as well as other (predefined) paths.

A special feature of our approach is that
the planning and control systems are
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decoupled from the sensors, with the inter-
nal representation acting as the interface.
This means that the sensors must be abie
to keep the internal representation in regis-
tration with the world and must accom-
plish this task fast enough to maintain
stability in the control algorithms. This
approach has the advantages that the con-
trol system does not have to wait for the
sensors to respond, does not have to know
about the internal structures in the sensory
system, and can get responses about the
world independent of the sensory modal-

ity used to determine the information.
(The information may be obtained from
models, hypotheses, or sensors.)
Currently, two kinds of representation
are used in the system. The first is an
object-based representation, which
describes the geometry and attributes of
parts and their instances. The second is a
spatial representation, which describes
objects by the space they occupy and
explicitly represents space that is full,
empty, or unseen. The representations are
active, in the sense that processes operate
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constantly to add new information,
modify obsolete information, and main-
tain consistency as new sensed data are
processed. The path planner uses the spa-
tial representation to generate collision-
free paths for the robot.

Sensing is heavily prediction-based.
Given the expected position of a sensor at
some time in the future, the sensing system
predicts which important features will be
visible and where they will appear in the
data. The predicted features are labeled
with their names and the names of the
objects to which they belong. They are
passed to the modules that handie sensory
processing, where they are used to guide
feature extraction and matching. Match-
ing has the effect of computing new posi-
tions for the objects. These are used to
modify the internal representation and so
allow more accurate predictions the next
time around. This feedback loop brings
the internal representation into registra-
tion with the world.

Our system has been implementedona
set of microprocessors that operate asyn-
chronously and communicate by means of
common memory. It makes use of two
sensors—an ordinary camera and a struc-
tured light range sensor. The sensors are
mounted on the wrist of the robot so
accurate position and orientation informa-
tion can be obtained and so they can be
moved along specified trajectories.

Representations

As mentioned previously, there are two
basic representations, one for spatial
information and one for geometric infor-

mation about objects. We distinguish ~

between generic models, which describe
the pure geometry of objects, and
instances of models, which describe the
unique aspects of individual instantiations
of models, such as their positions and
orientations. Generic models have an
internal coordinate system to which every-
thing is fixed. Instances have extra trans-
formations that locate and orient them in
the global coordinate system. There are
also generic models of the space occupied
by each model, again referenced to an
internal coordinate system. There is a sin-
gle spatial representation for object
instances, in which each instance is repre-
sented explicitly by the volume it occupies
and in which free space is also explicitly
represented.

Object representation. The purpose of
the object representation is to organize the
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data describing the objects so that the
processes of prediction and updating can
be performed as rapidly as possible. There
are many ways to represent objects. The
best representation depends on the
intended application. The representation
should be complete, concise, and unam-
biguous.2 However, use of the representa-
tion should be fast and easy.

In our system, objects are represented
by boundary representations. Surfaces are
built from edges that are in turn con-
structed from vertices. These representa-
tions are augmented by redundant
information to decrease the processing
delay associated with the execution of
algorithms. For example, given a straight

Generic models have
an internal
coordinate system to
which everything is
fixed.

edge and the location of the starting and
ending vertices, an algorithm can straight-
forwardly calculate the length of the edge.
However, if the length is explicitly stored,
an algorithm using the edge length can exe-
cute slightly faster. Several representations
to enhance the geometric description are
alsoincluded. These include octree infor-
mation, parametric equations, and aspect
graphs. A more complete description of
tire geometric object model can be found
in Lumia.’ While the precise information
stored in these representations can change
to reflect a better match with the
algorithms, the fundamental concept
remains the same: calculate as much as
possible off-line and store it explicitly in
the model.

A generic object is defined as the
description of an object in an object-
centered space. An instance, on the other
hand, provides information unique to a
specific part in the real world. While the
generic object description is relatively
long, the instance description needs only
a small amount of information concerning
the part’s precise location and orientation
in the world. Consequently, each instance
has a homogeneous matrix that trans-
forms a part location from its standard
orientation into a position in the real
world.

We require that every object be repre-
sented in the system at all times. There may
be several intermediate stages in the
machining of a part. Each stage is consid-
ered to be a different part and must be
given a description from the external CAD
database. This should not be too incon-
venient, since the system must know pre-
cisely how it intends to process each part.

The generic objects and the instances of
each generic object are linked to describe
the contents of the robot’s workspace. The
generic object representations, which store
the equivalent of CAD data, are stored in
a linked list. The instance information,
which includes the homogeneous trans-
form and provides the confidence that the
instance is at the location specified by the
transformation, is also stored in a linked
list. Generic objects and instances appear
(disappear) by allocating (freeing) memory
and modifying the links.

The current method of inputting object
models to the system is through a menu-
driven front end and takes the form of
sequences of surface, vertex, and edge
descripticns for each object. This informa-
tion is often available from CAD systems,
but a parser is needed to convert from the
particular internal format of each CAD
system to that used by the sensory system.
it does not appear that current CAD sys-
tems use internal representations that are
optimal for most of the operations
described above, although they usually
support some forms of prediction (e.g.,
rendering). The problem of converting
from one format to another is difficult,
but the conversion can usually be done off-
line, either at the time the part is defined
or before the models are downloaded at
the beginning of a task.

Spatial representation. Complementing
the object representation, the spatial rep-
resentation provides a way of indexing into
the world by position. This facilitates find-
ing out information about free paths
through space and answering questions
about what is in front of the robot. It is
also very useful for predicting what will be
visible from a particular viewpoint (doing
such predicting through occlusion analy-
sis and the computation of relative posi-
tions of objects and features). The
requirements of a spatial representation
are that it should encode spatial informa-
tion explicitly and should allow fast com-
putation of spatial relationships.

The spatial representation in our imple-
mentation is organized as an octree. An
octree is a recursive decomposition of a
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Figure 2. Objects enclosed within a cube (a), and the octree representing the volume
coutained by the cube (b). Round nodes are nonterminal nodes and square nodes
are terminal nodes. Black nodes represent regions occupied by objects. Reprinted

from Hong and Shneier'® ©1984 IEEE.)
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cubic space into subcubes® (Figure 2). Ini-
tially , the whole space is represented by a
single node in the tree called the root node.
If the cubic volume is homogeneous (is full
or empty), then the root is not decomposed
at all and comprises the complete descrip-
tion of the space. Otherwise, it is split into
eight equal subcubes (octants), which
become the children of the root. This pro-
cess continues until all the nodes are
homogeneous or until some resolution
limit is reached.

Many of the operations on the octree
involve casting rays or projecting volumes
through the space. To discover what is in
front of the robot (or a sensor), a cone is
projected into the tree and the objects that
intersect its volume are extracted. To
decide if a particular feature is occluded
from some viewpoint, a ray is cast from
the viewpoint to the node and checked for
intersection with objects along the way.’
To decide if a particular motion of the
robot is collision-free, the volume swept
out by this motion is checked for intersec-
tion with objects.®” In the octree, these
operations can be done rapidly, especially
if special hardware is available to perform
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transformations. (To speed up our imple-
mentation, we designed a homogeneous
matrix multiplier.)

The spatial representation is linked to
the object-based representation so that
queries that need information from both
representations can be answered easily.
This can be especially useful where fine
motion close to objects must be planned,
since the octree alone does not represent
object shapes to sufficient accuracy, and
the object representation alone does not
adequately represent the relationships
between objects and the space around
them.

The octree is constructed initially from
information given to the representation
system at the start of the task. Later, it is
modified by incoming sensed data, in a
way to be described below. The a priori
information consists of individual object-
centered octrees, one for each generic
object, and expected positions for each of
the instances of these objects. We should
mention that the original design of the sys-
tem assumed that the models would be
developed using the PADL-2 CAD sys-
tem. This system, in addition to being able

to generate boundary representations, uses
octrees for volume computations. While
the current system does not take output
from PADL-2, it does assume that the
octrees are available. We wrote a special
program to construct the octrees from the
object models described above.

The initial data are used to build a
world-centered octree describing the entire
workspace of the robot. The objects are
assumed to appear exactly as expected,
and they are projected into the tree. The
regions that are not filled are labeled as
unseen. (This projection algorithm is
described by Hong and Shneier.®) At this
stage, it is possible to start predicting what
the sensors should see and to begin plan-
ning paths through the space.

Prediction

Prediction requires a knowledge of the
parameters of the sensors and of the sen-
sors’ positions at some future time. It
makes use of both the object and spatial
representations to construct a set of fea-
tures to be extracted from the sensed data.
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Figure 3. Ray tracing in a quadtree.

These features are a subset of those which
the sensory system can extract and are
described in terms of the feature type and
parameters. (For example, a feature may
be described as a corner with a given
included angle in the coordinate system of
the sensor.) Each feature has an associated
certainty window, which correspondstoa
region in the image in which it may appear.
It also has a label giving its name and that
of the object to which it belongs. This
information is passed to the sensory sys-
tem and is used in both feature extraction
and matching. The process of construct-
ing the predictions is as follows.
Predictions must be made for both
known and unknown objects. For
unknown objects, the methods are quite
primitive. Features associated with an
unknown object are predicted on the basis
of the time sequence (velocity measure-
ment) of the location of the feature. This
can present severe problems if the features
appear and disappear as a result of occlu-
sion. However, once the object is identi-
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fied, many of these problems go away.
The prediction of features for known

objects uses the geometric and spatial

representations. Currently, only point

" features-——a corner with an included angle,

for example—are predicted. Eventually,
prediction of nonpoint features—the
observed edge length, for example—will
also be desired, but such prediction will be
more difficult to do because of partial
occlusion. The discussion here is limited to
prediction of point features.

The prediction of point features uses
both the geometric and spatial representa-
tions. First, the geométric representation
is used to predict the location of each of the
features of each instance. Then, the spa-
tial representation is used to remove the
features that are hidden from the camera.
Given the camera position in the world, a
cone of visibility is constructed. Each
instance of each generic object is checked
for intersection with the cone, using the
spatial representation. For each instance
that intersects the cone, the features (which

are stored in the geometric representation)
are first transformed into the world coor-
dinate system and then projected into the
image plane of the camera. This results in
a prediction that includes a specific feature
type, its parameters, its expected location
in the image plane, the generic object
name, and the instance name. Some of the
features projected into the image plane
may not be visible due to occlusion. Occlu-
sion may result from either interobject
occlusion, in which a feature cannot be
seen because another object is in the way,
or self-occlusion, in which the position of
the object itself hides the feature from the
camera. Removal of hidden features is
performed by casting rays into the spatial
répresentation and noting whether the ray
first intersects an object or the feature
location. Figure 3 shows this process work-
ing on quadtrees. A number of fu/l nodes
are in the lower right-hand corner. The
purpose of the algorithm is to determine
if the feature at point f is visible when the
camera is at point c. The idea is to trace the
ray from point ¢ to point f until a full node
is reached. If point f is contained in the full
node, the feature is declared to be visible.
Otherwise, the feature is declared hidden.
Lumia’® provides more details.

The above process results in a list of visi-
ble feature locations and the generic
object and instance associated with each
feature. Although the list of features could
be passed directly to other-algorithms, it
is better to define a neighborhood, or win-
dow, around each predicted feature loca-
tion to minimize the number of
calculations. The instance information
stores a confidence value that indicates
how sure the system is about the actual
location of the object. A window with a
size inversely proportional to this confi-
dence value can be created. The feature is
expected to fall within the bounds of this
window. The feature, window, generic
object, and instance information are
passed to the feature extractor as well as to
the 2D matcher. The use of this informa-
tion in matching and updating the repre-
sentation is described below.

Sensory processing
and matching

Both sensory processing and matching
make use of the predictions computed
from the current internal representations.
Sensory processing is simplified by the
focusing effect of the predicted features
and the windows provided for each fea-
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ture, while matching is made easier by the
labels attached to the predictions. A major
problem that has to be dealt with, how-
ever, is that of unexpected objects. These
have to be detected and described so that
the representations can be updated. This
implies that the areas outside of predicted
windows must also be processed, butin a
more generic way.

Sensory processing thus involves two
passes. We will describe only the technique
used for camera data; the range data tech-
niques are less developed. What is cur-
rently implemented involves a certain
amount of generic processing. This
includes dynamic image thresholding and
connected-components analysis. With the
components and the set of predicted fea-
tures provided as givens, the sequence
described below is executed.

For each predicted feature, each con-
nected component is checked to see if it
intersects the window surrounding the fea-
ture. If it does, the appropriate feature
detector is applied to that component,
within the window, and any detected fea-
tures that have the correct parameters are
labeled with the name of the predicted fea-
ture. The component is also labeled as
expected. It is possible for a predicted fea-
ture to find more than one match or for an
image feature to match with more than one
prediction. This ambiguity is treated by the
matching routines. After all the predicted
features have been processed, the con-
nected components are checked in
sequence to find any that have no matches
with predictions. When such a component
is found, a set of generic feature detectors
is applied to the component. The resulting
features are all labeled as belonging to the
same object (for which a new name is con-
structed) but are each given a unique fea-
ture label. Thus, each connected
component is required to belong to an
expected object or is treated as a separate
unexpected object. Later processing can
coalesce objects that are found to be
connected—when seen from another view-
point, for example—or can separate
objects that were seen as part of a single
object, perhaps due to occlusion. These
operations are accomplished using the spa-
tial representation.

What is passed up from the sensory sys-
tem is thus a set of labeled features, where
some of the labels are those that were
predicted and some are newly invented
names for unexpected objects. Informa-
tion about errors in finding expected fea-
tures is also available. The matcher takes
the labeled features as input and attempts
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to find consistent sets that correspond to
instances of the objects. When successful,
the matching process produces as output
an updated position and orientation for
each object, which are used to modify its
representation (see below).

Matching has two phases. The first,
which is quick and simple, applies to fea-
tures that were both predicted and found.
Here a least squares technique is used to
transform the model, whose name is
known from the prediction, onto the data.
The transformation that has the least error
provides the new position of the object and
is passed back to the representation. (This
process is explained by Rutkowski, Ben-
ton, and Kent.”) The matching process
also supplies an error term that is used in
the predictions to decide on the window

A problem that
currently is not well
handled is that of
noise in the sensing
process.

size for predicting features. For unex-
pected objects, the set of features is passed
to the representation to be used in describ-
ing the object. The features are also passed
to a special recognition module. This mod-
ule attempts to match the data to all the
known models but is not required to work
in real time, since the objects can be
described and manipulated even without
being recognized.

A tracking process was developed spe-
cially for unexpected features. By comput-
ing the velocities of the features in the
image and knowing the motions of the sen-
sor, it attempts to attach the same label to
features across successive images. Whena
feature is seen from several viewpoints, tri-
angulation can be used to compute its
three-dimensional position, which then
provides a better prediction of its appear-
ance in later views (and can also help the
recognition process).

Updating the
representations

The representations are updated from
information supplied by the sensory sys-
tem. This information can take the form
of new positions and orientations for
known objects or new features grouped to
form new unknown objects. There are two

ways of updating the spatial representa-
tion. One makes use of the processed data
used for matching, and one uses the origi-
nal image data.

Object-based representation. Each
instance of an object is stored as a row in
a table. Information about the instance
includes its current position, which is
stored as a homogeneous matrix, a set of
features that provide evidence for the
object, and pointers to its spatial represen-
tation and to its generic object description
if it has been identified. Updating the
information for expected objects is
straightforward. The row in the table cor-
responding to the object is found, and the
new position matrix replaces the previous
matrix. Each feature is also updated,
either by modifying its position or by
adding new features. (For objects that
have been recognized, it is not really neces-
sary to store the features, but they are
available and are stored for consistency
with the representation for unexpected
objects.)

The first time an object is seen, a new
entry is created in the table. It contains the
unique name of the object instance and the
set of features associated with the instance.
Initially, there is no pointer to a generic
model, but a pointer to the spatial repre-
sentation is created. Strictly speaking, an
object can be unexpected only the first
time it is seen, since thereafter there will be
some capability for predicting its appear-
ance. We nevertheless maintain a distinc-
tion until the object is recognized and the
pointer to its generic model is filled in.

A problem that currently is not well han-
dled is that of noise in the sensing process.
Unexpected objects may simply be
artifacts of the imaging process or may be
distorted by that process. Certain features
may be the result of special viewing angles
or occlusions. Currently, we simply keep
acount of the number of times an item has
appeared. This is clearly inadequate, since
observing an object from substantially the
same position many times yields much less
information than observing it twice from
widely separated viewpoints.

Spatial representation. The octree
describing the spatial layout of the robot’s
world has three kinds of nodes. There are
nodes labeled as empty, which are known
to contain free space; nodes labeled as full,
which are also labeled with the objects they
contain; and nodes labeled as unknown,
whose volume has not been seen. The
processes that update the representation
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Figure 4, The effect of intersecting the cones produced by two views of an object.
(Reprinted from M.O. Shneier, E.W. Kent, and P. Mansback, ‘‘Representing
Workspace and Model Knowledge for a Robot with Mobile Sensors,"’ Proc. 7th
Int’l Conf. Pattern Recognition, ©1984 IEEE.)

modify the tree according to current sen-
sory information. Their goal is to reduce
the number of unseen nodes and to ensure
that the full nodes are in the right places.

The first of the two processes used to
update the tree takes as input the position
matrices of those objects whose positions
have been changed as a result of sensory
processing. It erases the old representa-
tions of the objects and projects the object-
based generic octrees for each object into
the global octree, using the updated posi-
tion matrices. This process is described by
Hong and Shneier® and is essentially the
same procedure as is used to construct the
initial spatial octree.

The second process is more primitive
but more comprehensive. It handles unex-
pected objects as well as expected objects
and explicitly accounts for the uncertain-
ties in their spatial extents. Given an image
of the world from a known viewpoint, a set
of “‘cones’’ is projected into the octree
(Figure 4). The cones are defined by the
sets of rays that pass through the focal cen-
ter of the camera and are tangent to the sil-
houettes of the objects. Each component
in the image gives rise to a cone, and
another cone is created by the boundary of
the image. This last cone reflects the free
space ‘‘visible’’ from the given viewpoint
and has holes in it for each of the objects.
This projection process is described in
detail by Hong and Shneier.'°

It is clear that from a single view little
can be said about where in the cone an

52

object actually lies. From successive views,
however, the object can be constrained to
lie in the intersections of the resulting
cones (Figure 4). These intersections not
only provide position information but also
constrain the possible shapes of objects.
They are also useful in segmenting unex-
pected objects. A set of features extracted
from an image may appear to belongtoa
single unexpected object from some view-
point, but may be found to belong to sep-
arate objects when information from a
different viewpoint shows the separation.
This extra information can be useful in the
recognition process. The cones associated
with each object also provide information
that may be useful in the future for decid-
ing where to point a sensor to reduce
ambiguity in the scene as much as possible,
by reducing the volume of the cones.

Planning and control

The planning and control components
of the robot system interface with the sen-
sory system through the internal represen-
tation, as shown in Figure 1. The sensory
system constructs and updates this repre-
sentation, while the planning and control
system queries the representation about
object locations and orientations, object
velocities, object sizes, and so on. Here, we
discuss the path planning and collision
avoidance component. The goal of this

component is to generate collision-free
paths in real time for three-dimensional
movement by the robot.

In our system, path planning and colli-
sion detection use the octree spatial repre-
sentation. The nodes of the octree actually
form the search space during path plan-
ning. For collision detection to be per-
formed, the robot’s volume, and the
volume it sweeps out when it moves, must
be represented. The path planner takes as
input the configurations of the robot in the
start and goal positions. The output is a
sequence of intermixed translations and
rotations in 3D space. This path is then
passed to the robot controller for exe-
cution.

In performing a search through the
octree space, the planner combines several
techniques in an attempt to achieve the
greatest speed in finding free paths. The
first technique, called hypothesize-and-
test, involves hypothesizing a simple path
for the robot by generating the volume it
will sweep out during a motion. We con-
sider two kinds of simple paths, one for
translation and one for rotation. Any
complex path can be approximated by an
intermixed sequence of these two paths.

The second and third search techniques
are hill climbing and the A *search. A*is
a best-first, tree-structured search
method.!" Hill climbing and A* are
applied to a graph representation of the
octree search space, initially obtained by
connecting all adjacent leaf nodes of the
octree. These two methods are used to
obtain translation components of the
robot’s path. The methods complement

_ one another—hiil climbing is fast, but

because it searches only locally, it'can get
stuck at a local minimum in the cost func-
tion; A *, though slower, can get the robot
out of local minima since it searches
globally.

The fourth search technique is called the
multiresolution grid search. Using the fol-
lowing method, this technique offers a way
to search at a finer resolution than that of
the octree search space. A high-resolution
grid is placed within the octants of the
octree, and this grid is searched in a mul-
tiresolution fashion. To determine
whether a path from one point to another
is valid, the hypothesize-and-test tech-
nique is applied by forming a swept vol-
ume between the two positions and
checking for collisions with obstacles.

For potential collisions to be detected,
the swept volume representing the robot’s
path must be compared with obstacles rep-
resented in the octree. The robot is repre-
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sented in terms of its links, their
attachment relations, and their axes of
motion. Each link as well as the swept-
volume paths formed by translation or
rotation of a link are approximated by a set
of primitive shapes.

There are three requirements for defin-
ing a primitive shape. The first is that the
computation that determines whether the
shape intersects an object in the octree
must be fast. The primitive shapes are
therefore defined in terms of a spine—
either a point, a simple curve segment
(e.g., astraight line segment), or a simple
surface segment (e.g., a parallelogram)—
and a radius—a single extension outward
from the spine that defines the shape’s sur-

_ face. By representing octants in the octree
as combinations of spheres, the intersec-
tion test only has to determine the short-
est distance from the center of a sphere to
the spine of the primitive shape and check
whether this distance exceeds the sum of
the radii of the sphere and shape.

The second requirement for a primitive
shape is that it should be a reasonable
approximation of a part of the robot or its
swept volume. The third requirement is

‘that the generation of primitive shapes
should be very fast because a particular
shape, if it is to represent a swept-volume
path, must be dynamically generated dur-
ing searching. Many of the shapes are
therefore defined as translational or rota-
tional sweeps of some other primitive
shape. Examples of primitive shapes used
in the system are

¢ asphere, defined as a point spine and
a radius (Figure 5a),

* a cylsphere, a volume swept out by
linear translation of a sphere and
defined as a line segment spine and
the radius of the sphere (Figure 5b),

* avolume swept out by linear transla-
tion of a cylsphere and defined as a
parallelogram spine and the radius of
the cylsphere (Figure 5¢),

¢ a volume swept out by rotation of a
¢ylsphere about an axis intersecting
and perpendicular to its spine, and
defined as a planar spine shape and
the radius of the cylsphere (Figures 5d
and Se), and

a volume swept out by rotationofa

sphere about an axis outside the

sphere and defined as an arc segment
spine and the radius of the sphere

(Figure 5f).

The latter volume is obtained if a rotation
of arobot link is to occur about its axis of
motion. More details about the path plan-
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Figure 5. Primitive shapes used by the path planning module—sphere (a), cylsphere
(b), translation-swept cylsphere (c), rotation-swept cylsphere (d), another rotation-
swept cylsphere (e), and torus section (f). (Reprinted from Herman® ©1986 IEEE,

SPIE.)

ning system can be found in the papers by
Herman.%’

Implementation

The sensory, representation, and path
planning system has been implemented as
a set of modules, each of which runs in a
separate microprocessor. A distributed
operating system called GRAMPS has
been developed to control the communi-
cation between processes, which takes
place through common memory.'
GRAMPS is a truly distributed operating
system in that parts of its code reside on
each of the processors and an unlimited
number of processors can operate on the
same bus, either independently or cooper-
atively. Any of the processes can be
restarted at any time without affecting the
operation of the others, except in so far as

they communicate with each other.
Processes communicate via common
memory. Two basic interfaces are availa-
ble. In the first, regions of memory are
defined as ‘‘files’’ and are read and writ-
ten by those processors that know their file
names. A semaphore system is used to
ensure that only one user at a time can
write a file and, if desired, that only one
reader can read it. There are norestrictions
on the number of users for each file. The
second interface relies on dynamic mem-
ory allocation and the passing of pointers
to structures allocated. Any processor can
allocate structures in common memory
and pass pointers to any set of other
processors (through a file). The memory
can be modified by all the processors that
have pointers to it and will not be freed
until the last of the processors finishes
using it. This is the preferred way of com-
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@
Figure 6. Image-of a stack of objects (a); processed image of stack, with windows showing predicted locations of corners (b).

munication, since it requires much less bus
traffic.

Currently, eleven processors are defined
for the system (see Figure | again). One
processor handles sensor interactions and

controls the illumination. Another per- -

forms generic image processing and builds
low-level descriptions of the images. These
two processors do not make use of any
top-down information, except commands
to take pictures using either the range sen-
sor or the camera. All the rest of the
processors are much more closely linked to
the model data.

A third processor is dedicated to feature
extraction. It takes as input a set of predic-
tions and the preprocessed image data. Its
outputs are labeled features, descriptions
of unexpected features, and errors. These
are sent to the matcher, which is imple-
mented on yet another processor. The
matcher attempts to register models with
the labeled features and computes new
positions as well as errors in the fitting pro-
cess. These are sent to the modeling mod-
ules along with any unexpected features,
which are grouped into tentative objects.

There is also a prediction module, which
constructs the expected features for future
views, two modules to update the
representations (one for the object-based
representation and one for the spatial rep-
resentation), and a feature-tracking mod-
ule. A supervisory module has been
designed but has not yet been integrated
into the system. Its role will be to decide
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which sensors to use to best update the
representations and where to concentrate
processing efforts. It will also make sure
that all the other modules are running cor-
rectly. Finally, there is the path planning
module, which interfaces with the robot
controller.

All the modules have been imple-
mented, although some are not yet run-
ning on the multi-microprocessor under
GRAMPS. The whole system has
nonetheless been run on real images, and
data have been passed from module to
module, in some cases using common
memory and in others using serial or par-
allel links. As the hardware difficulties
inherent in running so many processors on
the same backplane are overcome, more
and more components of the system are
being integrated into a uniform whole.

Figure 6a shows a gray-scale image of a
stack of objects. The system was given as
input a description of the blocks and the
position of the camera when it took the
picture. Prediction was restricted to the
corners of the parallelepiped in front of the
pile and was able to reject corners that
were occluded. The windows in Figure 6b
show the predicted locations of corners,
with numbers indicating their identities.
Where corners were indeed found, crosses
indicate their actual positions. Some of the
corners were not found, since the predic-
tion system assumes that gray-scale images
will be processed and the feature extrac-
tion was actually done on thresholded

images. Thus, some features that would
normally be extracted do not appear. Only
those features in the silhouette of the
object pile are visible. We have not
attempted to remove the internal corners
because we expect to use gray-scale images
in the future and because the system is abie
to deal with the missing information.
From the set of corners that were matched,
a new position was computed for the
object and fed back to the representations.
A sequence of experiments was carried out
to measure the convergence and accuracy
of the three-dimensional pose-update
algorithm, The pose is represented by rota-
tion and tilt. In the experiments, rotation
was always calculated within five degrees
of the true value and tilt within three
degrees. Convergence took two to three
iterations in all cases and was welil
behaved. These results are presented in
detail in the paper by Rutkowski, Benton,
and Kent.’

The path planning system has been
tested separately with a real robot. The
volume of the robot gripper was approxi-
mated as the union of fifteen spheres. Up
to five block-shaped obstacles were placed
arbitrarily on the robot’s workbench.
Arbitrary start and goal points were then
chosen. The system successfully found
reasonabile collision-free paths between all
sets of start and goal points. However,
only translation of the gripper was tested.
Rotation of the gripper links has not yet
been tested.
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he industrial robotics environ-

ment is particularly well suited to

the use of models of objects.
More and more often, these models are
available from CAD systems. However,
there is an important question about the
adequacy of most CAD systems as the sole
source of model information for a sensory
system. Many of the properties of objects
that are needed for a sensory system are
not typically represented in CAD systems.
Often, the concept of an object is not very
well defined. An object may be created
merely as a coincidence of a set of surfaces
or volumes rather than as an explicit entity
with its own properties and attributes,
Often, surface finish, surface markings,
and even surface shape (for example, the
pitch of a screw) are stored only as anno-
tations. Some of these properties are essen-
tial for recognizing and locating objects
using a sensory system.

The diversity of CAD systems, each
based on very different primitive concepts,
makes approaching the automatic model
transfer problem difficult, especially in an
environment in which the choice of the
design system is not in the hands of the
designers of the sensory system. The sys-
tem described here does not provide the
interfaces and additional information
needed to use a CAD system directly but,
at the same time, does not use any internal
representations that cannot currently be
extracted from a CAD system, albeit with
the application of a certain amount of
intelligence.

The system described here is unique in
its scope. It combines sensory processing,
object and spatial representation, and path
planning in a unified and integrated man-
ner. It uses prediction-driven vision and
sequences of intensity and range images to
maintain an internal representation of the
world. It uses this internal representation
to answer questions about the world posed
by the control system. These include ques-
tions about path planning and questions
about locating objects by name or
position.

Geometric models play a central role in
performing the sensing, planning, and
control. They are used for predicting fea-
tures in the sensory data and for recogniz-
ing sensory data, and they provide a
vocabulary by means of which the control
and sensory components can commu-
nicate.

The system has been successfully run
with a number of sample inputs. Our cur-
rent efforts are aimed at bringing up the
entire system on a distributed processing
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system, building special hardware where
necessary to allow operation in real time,
and extending the capabilities of each of
the components to encompass a wider
class of objects and tasks. We will continue
to focus on prediction-based techniques
for sensory processing, making heavy use
of a priori models of objects and of the
coherency and continuity exhibited by the
real world.(J
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